Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Sci Rep ; 14(1): 3682, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355770

RESUMO

Preservation of executive function, like inhibition, closely links to the quality of life in senior adults. Although neuroimaging literature has shown enhanced inhibitory function followed by aerobic exercise, current evidence implies inconsistent neuroplasticity patterns along different time durations of exercise. Hence, we conducted a 12-week exercise intervention on 12 young and 14 senior volunteers and repeatedly measured the inhibitory functionality of distinct aspects (facilitation and interference effects) using the numerical Stroop task and functional Magnetic Resonance Imaging. Results showcased improved accuracy and reduced reaction times (RT) after 12-week exercise, attributed to frontoparietal and default mode network effects. In young adults, the first phase (0 to six weeks) exercise increased the activation of the right superior medial frontal gyrus, associated with reduced RT in interference, but in the second intervention phase (six to twelve weeks), the decreased activation of the left superior medial frontal gyrus positively correlated with reduced RT in facilitation. In senior adults, the first six-week intervention led to reduced activations of the inferior frontal gyrus, inferior parietal gyrus, and default mode network regions, associated with the reduced RT in interference. Still, in the second intervention phase, only the visual area exhibited increased activity, associated with reduced RT in interference. Except for the distinctive brain plasticity between the two phases of exercise intervention, the between-group comparison also presented that the old group gained more cognitive benefits within the first six weeks of exercise intervention; however, the cognitive improvements in the young group occurred after six weeks of intervention. Limited by the sample size, these preliminary findings corroborated the benefits of aerobic exercise on the inhibitory functions, implying an age × exercise interaction on the brain plasticity for both facilitation and interference.


Assuntos
Função Executiva , Qualidade de Vida , Adulto Jovem , Humanos , Função Executiva/fisiologia , Imageamento por Ressonância Magnética/métodos , Exercício Físico , Envelhecimento , Encéfalo/fisiologia
2.
eNeuro ; 10(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37507226

RESUMO

The α phase has been theorized to reflect fluctuations in cortical excitability and thereby impose a cyclic influence on visual perception. Despite its appeal, this notion is not fully substantiated, as both supporting and opposing evidence has been recently reported. In contrast to previous research, this study examined the effect of the peristimulus instead of prestimulus phase on visual detection through a real-time phase-locked stimulus presentation (PLSP) approach. Specifically, we monitored phase data from magnetoencephalography (MEG) recordings over time, with a newly developed algorithm based on adaptive Kalman filtering (AKF). This information guided online presentations of masked stimuli that were phased-locked to different stages of the α cycle while healthy humans concurrently performed detection tasks. Behavioral evidence showed that the overall detection rate did not significantly vary according to the four predetermined peristimulus α phases. Nevertheless, the follow-up analyses highlighted that the phase at 90° relative to 180° likely enhanced detection. Corroborating neural parietal activity showed that early interaction between α phases and incoming stimuli orchestrated the neural representation of the hits and misses of the stimuli. This neural representation varied according to the phase and in turn shaped the behavioral outcomes. In addition to directly investigating to what extent fluctuations in perception can be ascribed to the α phases, this study suggests that phase-dependent perception is not as robust as previously presumed, and might also depend on how the stimuli are differentially processed as a result of a stimulus-phase interaction, in addition to reflecting alternations of the perceptual states between phases.


Assuntos
Ritmo alfa , Excitabilidade Cortical , Humanos , Percepção Visual , Magnetoencefalografia , Estimulação Luminosa
3.
iScience ; 26(4): 106354, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37035001

RESUMO

Physical activity in the form of aerobic exercise has many beneficial effects on brain function. Here, we aim to revisit the effects of exercise on brain morphology and neurovascular organization using a rat running model. Electrocorticography (ECoG) was integrated with laser speckle contrast imaging (LSCI) and applied to simultaneously detect CSD propagation and the corresponding neurovascular function. In addition, blood oxygenation level-dependent (BOLD) signal in fMRI was used to observe cerebral utilization of oxygen. Results showed significant decrease in somatosensory evoked potentials (SSEPs) and deceleration of CSD propagation in the EXE group. Western blot results in the EXE group showed significant increases in BDNF, GFAP, and NeuN levels and significant decreases in neurodegenerative disease markers. Decreases in SSEP and CSD parameters may result from exercise-induced increases in cerebrovascular system function and increases in the stability and buffering of extracellular ion concentrations and cortical excitability.

4.
Sci Rep ; 12(1): 16099, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167958

RESUMO

Dynamic duplex sonography (DUS) is not comprehensive in the evaluation of arteriogenic erectile dysfunction (ED). We introduced a new parameter, the flow index (FI), into the assessment of arteriogenic ED. A retrospective review of a prospective database was conducted. Patients undergoing DUS and pelvic computed tomography angiography for the evaluation of ED were included. The FI was calculated from peak systolic velocity (PSV) and the percentages of pelvic arterial (PLA) stenosis. Correlations between PSV, PLA stenosis, the FI, and erectile function were calculated. Eighty-three patients were included. Compared with PSV, the FI had better correlations with the erection hardness score (EHS) (rs = 0.405, P < 0.001 for FI; rs = 0.294, P = 0.007 for PSV). For EHS < 3, the areas under the ROC curve of FI and PSV were 0.759 and 0.700, respectively. In patients with normal DUS but EHS < 3, PLA stenosis was more severe (62.5% vs. 10.0%, P = 0.015), and the FI was lower (8.35 vs. 57.78, P = 0.006), while PSV was not different. The FI is better than PSV in the evaluation of arteriogenic ED. On the other hand, assessment of the pelvic arterial system should be included in the evaluation of ED.


Assuntos
Disfunção Erétil , Velocidade do Fluxo Sanguíneo/fisiologia , Constrição Patológica , Disfunção Erétil/diagnóstico por imagem , Humanos , Masculino , Ereção Peniana/fisiologia , Poliésteres
5.
Parkinsonism Relat Disord ; 98: 114-117, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35314108

RESUMO

The etiologies for adults presenting with hemiballism are usually acquired lesions in the contralateral side of subthalamic nucleus. We present a 71-year-old woman with progressive onset of left hemiballism, orolingual dyskinesia and cognitive decline for 3 years. A rare genetic etiology was the final diagnosis for this index patient. In this movement disorder round, we describe our approach to this clinical presentation, and discuss the phenomenon and radiological features of this rare genetic disorder.


Assuntos
Disfunção Cognitiva , Discinesias , Transtornos dos Movimentos , Núcleo Subtalâmico , Idoso , Disfunção Cognitiva/complicações , Discinesias/complicações , Discinesias/etiologia , Feminino , Humanos , Ferro , Transtornos dos Movimentos/etiologia
6.
Insights Imaging ; 12(1): 185, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34894298

RESUMO

BACKGROUND: Cerebral blood flow (CBF) and the morphology of the cerebral arteries are important for characterizing cerebrovascular disease. Silent magnetic resonance angiography (Silent MRA) is a MRA technique focusing on arterial structural delineation. This study was conducted to investigate the correlation between Silent MRA and CBF quantification, which has not yet been reported. METHODS: Both the Silent MRA and time-of-flight magnetic resonance angiography scans were applied in seventeen healthy participants to acquire the arterial structure and to find arterial intensities. Phase-contrast MRA (PC-MRA) was then used to perform the quantitative CBF measurement of 13 cerebral arteries. Due to different dataset baseline signal level of Silent MRA, the signal intensities of the selected 13 cerebral arteries were normalized to the selected ROIs of bilateral internal carotid arteries. The normalized signal intensities were used to determine the relationship between Silent MRA and CBF. RESULTS: The image intensity distribution of arterial regions generated by Silent MRA showed similar laminar shape as the phase distribution by PC-MRA (correlation coefficient > 0.62). Moreover, in both the results of individual and group-leveled analysis, the intensity value of arterial regions by Silent MRA showed positively correlation with the CBF by PC-MRA. The coefficient of determination (R2) of individual trends ranged from 0.242 to 0.956, and the R2 of group-leveled result was 0.550. CONCLUSIONS: This study demonstrates that Silent MRA provides valuable CBF information despite arterial structure, rendering it a potential tool for screening for cerebrovascular disease.

7.
Sci Rep ; 11(1): 20243, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642349

RESUMO

Latest simultaneous multi-slice (SMS) methods greatly benefit MR efficiency for recent studies using parallel imaging technique. However, these methods are limited by the requirement of array coils. The proposed Coherent Wideband method, which employs an extended field of view to separate multiple excited slices, can be applied to any existing MRI instrument, even those without array coils. In this study, the Coherent Wideband echo-planar imaging method was implemented on 7 T animal MRI to exhibit comprehensive enhancements in neuro-architecture, including diffusion tensor imaging (DTI) and functional MR studies (fMRI). Under the same scan time, the time-saving effect can be manipulated to increase the number of averages for DTI SNR improvement, reducing fractional anisotropy difference by 56.9% (from 0.072 to 0.041) and the deviation angle by 64% (from 25.3° to 16.2°). In summary, Coherent Wideband Echo Planar Imaging (EPI) will provide faster, higher resolution, thinner slice, or higher SNR imaging for precision neuro-architecture studies.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem Ecoplanar/métodos , Interpretação de Imagem Assistida por Computador/métodos , Animais , Anisotropia , Imagem de Tensor de Difusão , Imagem Ecoplanar/instrumentação , Imageamento por Ressonância Magnética , Masculino , Ratos , Razão Sinal-Ruído
9.
Sci Rep ; 11(1): 9628, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953248

RESUMO

In this simulation work, the linearized Bregman iterative algorithm was applied to solve the magnetic source distribution problem of a magnetic particle imaging (MPI) system for small animals. MPI system can apply an excitation magnetic field, and the induced magnetic field from the magnetic nanoparticles (MNPs) can be detected by the sensors of MPI system. With a gaussian distribution source at the upper side of the mouse brain, sensors set above the mouse brain and the constant excitation magnetic field, the average deviation of the calculated source distribution from the multiplane scanning along the axis away from the mouse brain and the closest plane scanning are 2.78 × 10-3 and 2.84 × 10-3 respectively. The simulated result showed that combination of multiplane scanning hardly improves the accuracy of the source localization. In addition, a gradient scan method was developed that uses gradient magnetic field to scan the mouse brain. The position of the maximum of the lead field matrix will be controlled by the gradient field. With a set up gaussian distribution source at the bottom of the mouse brain, the average deviation of the calculated source distribution from the gradient scan method and the constant field are 4.42 × 10-2 and 5.05 × 10-2. The location error from the two method are 2.24 × 10-1 cm and 3.61 × 10-1 cm. The simulation showed that this method can improve the accuracy compared to constant field when the source is away from the sensor and having a potential for application.

10.
Neuroimage ; 233: 117924, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33753240

RESUMO

Functional magnetic resonance imaging (fMRI) based on the blood oxygenation level-dependent (BOLD) contrast has become an indispensable tool in neuroscience. However, the BOLD signal is nonlocal, lacking quantitative measurement of oxygenation fluctuation. This preclinical study aimed to introduced functional quantitative susceptibility mapping (fQSM) to complement BOLD-fMRI to quantitatively assess the local susceptibility and venous oxygen saturation (SvO2). Rats were subjected to a 5 Hz flashing light and the different inhaled oxygenation levels (30% and 100%) were used to observe the venous susceptibility to quantify SvO2. Phase information was extracted to produce QSM, and the activation responses of magnitude (conventional BOLD) and the QSM time-series were analyzed. During light stimulation, the susceptibility change of fQSM was four times larger than the BOLD signal change in both inhalation oxygenation conditions. Moreover, the responses in the fQSM map were more restricted to the visual pathway, such as the lateral geniculate nucleus and superior colliculus, compared with the relatively diffuse distributions in the BOLD map. Also, the calibrated SvO2 was approximately 84% (88%) when the task was on, 83% (87%) when the task was off during 30% (and during 100%) oxygen inhalation. This is the first fQSM study in a small animal model and increases our understanding of fQSM in the brains of small animals. This study demonstrated the feasibility, sensitivity, and specificity of fQSM using light stimulus, as fQSM provides quantitative clues as well as localized information, complementing the defects of BOLD-fMRI. In addition to neural activity, fQSM also assesses SvO2 as supplementary information while BOLD-fMRI dose not. Accordingly, the fQSM technique could be a useful quantitative tool for functional studies, such as longitudinal follow up of neurodegenerative diseases, functional recovery after brain surgery, and negative BOLD studies.


Assuntos
Mapeamento Encefálico/métodos , Corpos Geniculados/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa/métodos , Colículos Superiores/diagnóstico por imagem , Vias Visuais/diagnóstico por imagem , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Corpos Geniculados/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Colículos Superiores/fisiologia , Vias Visuais/fisiologia
11.
Front Hum Neurosci ; 14: 571118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328929

RESUMO

Evidence suggests divergent thinking is the cognitive basis of creative thoughts. Neuroimaging literature using resting-state functional connectivity (RSFC) has revealed network reorganizations during divergent thinking. Recent studies have revealed the changes of network organizations when performing creativity tasks, but such brain reconfigurations may be prolonged after task and be modulated by the trait of creativity. To investigate the dynamic reconfiguration, 40 young participants were recruited to perform consecutive Alternative Uses Tasks (AUTs) for divergent thinking and two resting-state scans (before and after AUT) were used for mapping the brain reorganizations after AUT. We split participants into high- and low-creative groups based on creative achievement questionnaire (CAQ) and targeted on reconfigurations of the two brain networks: (1) default-mode network (DMN) and (2) the network seeded at the left inferior frontal gyrus (IFG) because the between-group difference of AUT-induced brain activation located at the left IFG. The changes of post-AUT RSFCs (DMN and IFGN) indicated the prolonged effect of divergent thinking. More specifically, the alterations of RSFCIFG-AG and RSFCIFG-IPL (AG: angular gyrus, IPG: inferior parietal lobule) in the high-creative group had positive relationship with their AUT performances (originality and fluency), but not found in the low-creative group. Furthermore, the RSFC changes of DMN did not present significant relationships with AUT performances. The findings not only confirmed the possibility of brain dynamic reconfiguration following divergent thinking, but also suggested the distinct IFGN reconfiguration between individuals with different creativity levels.

12.
J Clin Med ; 9(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992892

RESUMO

Vessel flow quantification by two-dimensional (2D) phase-contrast magnetic resonance imaging (PC-MRI) using a three-dimensional (3D) magnetic resonance angiography (MRA) model to measure cerebral blood flow has unclear analytical reliability. The present study aimed to determine the inter- and intra-rater reliability of quantitative vessel-flow PC-MRI and potential factors influencing its consistency. We prospectively recruited 30 Asian participants (aged 20-90 years; 16 women; 22 healthy and 8 stroke patients) for performing 1.5-T MR equipped with a head coil. Each participant was first scanned for time-of-flight magnetic resonance angiography (TOF-MRA) images for localization of intracranial arteries. The 2D PC-MRI for each cerebral artery (total 13 arteries in fixed order) was performed twice by two well-trained operators in optimal position. Using the same 3D MRA as a map and facilitated with the non-invasive optimal vessel analysis (NOVA) system, each scan was taken on a plane perpendicular to the target artery. Two consecutive full 13-artery scans were performed at least 15 min apart after participants were removed from the scanner table and then repositioned. A total of four PC flow images obtained from each target artery were transmitted to a workstation facilitated with the NOVA system. Flow data were calculated semi-automatically by the NOVA system after a few simple steps. Two-way mixed-effect models and standard errors of measurements were used. In 13 cerebral arteries, repeatability, using the intra-rater estimate expressed as the average-measures intraclass correlation coefficient, ranged from 0.641 to 0.954, and reproducibility, using the inter-rater estimate, ranged from 0.672 to 0.977. Except in the middle cerebral artery and the distal segment of the anterior cerebral artery, repeatability and reproducibility were excellent (intraclass correlation coefficient exceeded 0.8). The use of quantitative vessel-flow PC-MRI is a precise means to measure blood flow in most target cerebral arteries. This was evidenced by inter-rater and intra-rater correlations that were good/excellent, indicating good reproducibility and repeatability.

13.
J Neurosci Methods ; 344: 108829, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32663550

RESUMO

BACKGROUND: Anatomically and physiologically, there is strong relationship between the brain and body. A new MRI platform covering both the brain and the limb would be beneficial for a more thorough understanding of the brain-body interactions. NEW METHOD: A new arm-over-head (AOH) position was developed to collect MRI of the brain and one arm simultaneously. Subject's tolerability and SNR of both the brain and limb under a serial of seven different TR (250-3000 ms) were tested. Then, blocked motor imagery tasks were performed to test the possible brain-body oscillations. RESULTS: The new MRI position provided structural images with good quality, and the AOH position had the best SNR under TR 3000 ms (p = 0.03 for the brain; p = 0.064 for the limb). Then, by using both hypothesis-free independent component analysis (ICA) and a priori seed-based functional connectivity (FC) analysis, it is demonstrated during motionless motor imagery tasks there existed possible brain-body BOLD oscillations connecting especially arm flexors to default mode, vision, and sensorimotor networks. The FC appeared at network density as low as 5%. COMPARISON WITH EXISTING METHODS: We have developed a new MRI subject position to explore the possibilities of more extensive neuronal and physiological networks. CONCLUSIONS: The results of this preliminary experiment indicate that functional brain networks might extend outside the brain. A bottom-up circulatory effect might explain this phenomenon. Nonetheless, considering the mechanism of neural top-down control and the nature of complex brain networks, the existence of a more extensive whole-body functional network is rational and possible.


Assuntos
Mapeamento Encefálico , Encéfalo , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética
14.
Magn Reson Med ; 84(1): 375-383, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31793025

RESUMO

PURPOSE: Resting-state functional MRI (rs-FMRI) has shown potential for presurgical mapping of eloquent cortex when a patient's performance on task-based FMRI is compromised. The seed-based analysis is a practical approach for detecting rs-FMRI functional networks; however, seed localization remains challenging for presurgical language mapping. Therefore, we proposed a data-driven approach to guide seed localization for presurgical rs-FMRI language mapping. METHODS: Twenty-six patients with brain tumors located in left perisylvian regions had undergone task-based FMRI and rs-FMRI before tumor resection. For the seed-based rs-FMRI language mapping, a seeding approach that integrates regional homogeneity and meta-analysis maps (RH+MA) was proposed to guide the seed localization. Canonical and task-based seeding approaches were used for comparison. The performance of the 3 seeding approaches was evaluated by calculating the Dice coefficients between each rs-FMRI language mapping result and the result from task-based FMRI. RESULTS: With the RH+MA approach, selecting among the top 6 seed candidates resulted in the highest Dice coefficient for 81% of patients (21 of 26) and the top 9 seed candidates for 92% of patients (24 of 26). The RH+MA approach yielded rs-FMRI language mapping results that were in greater agreement with the results of task-based FMRI, with significantly higher Dice coefficients (P < .05) than that of canonical and task-based approaches within putative language regions. CONCLUSION: The proposed RH+MA approach outperformed the canonical and task-based seed localization for rs-FMRI language mapping. The results suggest that RH+MA is a robust and feasible method for seed-based functional connectivity mapping in clinical practice.


Assuntos
Neoplasias Encefálicas , Idioma , Mapeamento Encefálico , Neoplasias Encefálicas/diagnóstico por imagem , Córtex Cerebral , Humanos , Imageamento por Ressonância Magnética
15.
Mol Brain ; 11(1): 55, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285801

RESUMO

Neuropathic pain is a major worldwide health problem. Although central sensitization has been reported in well-established neuropathic conditions, information on the acute brain activation patterns in response to peripheral nerve injury is lacking. This study first mapped the brain activity in rats immediately following spared nerve injury (SNI) of the sciatic nerve. Using blood-oxygenation-level-dependent functional magnetic resonance imaging (BOLD-fMRI), we observed sustained activation in the bilateral insular cortices (ICs), primary somatosensory cortex (S1), and cingulate cortex. Second, this study sought to link this sustained activation pattern with brain sensitization. Using manganese-enhanced magnetic resonance imaging (MEMRI), we observed enhanced activity in the ipsilateral anterior IC (AIC) in free-moving SNI rats on Days 1 and 8 post-SNI. Furthermore, enhanced functional connectivity between the ipsilateral AIC, bilateral rostral AIC, and S1 was observed on Day 8 post-SNI. Chronic electrophysiological recording experiments were conducted to confirm the tonic neuronal activation in selected brain regions. Our data provide evidence of tonic activation-dependent brain sensitization during neuropathic pain development and offer evidence that the plasticity changes in the IC and S1 may contribute to neuropathic pain development.


Assuntos
Rede Nervosa/fisiopatologia , Neuralgia/fisiopatologia , Plasticidade Neuronal/fisiologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Prosencéfalo/fisiopatologia , Nervo Isquiático/lesões , Nervo Isquiático/fisiopatologia , Animais , Comportamento Animal , Eletrodos Implantados , Feminino , Hiperalgesia/complicações , Hiperalgesia/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Manganês/química , Neuralgia/complicações , Oxigênio/sangue , Traumatismos dos Nervos Periféricos/complicações , Ratos Sprague-Dawley
16.
Front Neuroinform ; 12: 11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593520

RESUMO

Task-evoked and resting-state (rs) functional magnetic resonance imaging (fMRI) techniques have been applied to the clinical management of neurological diseases, exemplified by presurgical localization of eloquent cortex, to assist neurosurgeons in maximizing resection while preserving brain functions. In addition, recent studies have recommended incorporating cerebrovascular reactivity (CVR) imaging into clinical fMRI to evaluate the risk of lesion-induced neurovascular uncoupling (NVU). Although each of these imaging techniques possesses its own advantage for presurgical mapping, a specialized clinical software that integrates the three complementary techniques and promptly outputs the analyzed results to radiology and surgical navigation systems in a clinical format is still lacking. We developed the Integrated fMRI for Clinical Research (IClinfMRI) software to facilitate these needs. Beyond the independent processing of task-fMRI, rs-fMRI, and CVR mapping, IClinfMRI encompasses three unique functions: (1) supporting the interactive rs-fMRI mapping while visualizing task-fMRI results (or results from published meta-analysis) as a guidance map, (2) indicating/visualizing the NVU potential on analyzed fMRI maps, and (3) exporting these advanced mapping results in a Digital Imaging and Communications in Medicine (DICOM) format that are ready to export to a picture archiving and communication system (PACS) and a surgical navigation system. In summary, IClinfMRI has the merits of efficiently translating and integrating state-of-the-art imaging techniques for presurgical functional mapping and clinical fMRI studies.

17.
PLoS One ; 12(11): e0187824, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29121075

RESUMO

This study aimed to investigate the therapeutic responses of lung cancer mice models with adenocarcinoma HCC827 (gefitinib sensitive) and HCC827R (gefitinib resistant) to the epidermal growth factor receptor-tyrosine kinase inhibitor erlotinib alone and in combination with the anti-angiogenesis agent bevacizumab using dynamic contrast enhanced (DCE) and diffusion-weighted MRI. In the HCC827 model, temporal changes in DCE-MRI derived parameters (Ktrans, kep, and iAUC90) and apparent diffusion coefficient (ADC) were significantly correlated with tumor size. Ktrans and iAUC90 significantly decreased at week 2 in the groups receiving erlotinib alone and in combination with bevacizumab, whereas kep decreased at week 1 and 2 in both treatment groups. In addition, there was a significant difference in iAUC90 between the treatment groups at week 1. Compared to the control group of HCC827, there was a significant reduction in microvessel density and increased tumor apoptosis in the two treatment group. ADC value increased in the erlotinib alone group at week 1 and week 2, and in the erlotinib combined with bevacizumab group at week 2. Enlarged areas of central tumor necrosis were associated with a higher ADC value. However, progressive enlargement of the tumors but no significant differences in DCE parameters or ADC were noted in the HCC827R model. These results showed that both erlotinib alone and in combination with bevacizumab could effectively inhibit tumor growth in the gefitinib-sensitive lung cancer mice model, and that this was associated with decreased vascular perfusion, increased ADC percentage, decreased microvessel density, and increased tumor apoptosis with a two-week treatment cycle.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Bevacizumab/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Cloridrato de Erlotinib/administração & dosagem , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores da Angiogênese/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Bevacizumab/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste , Receptores ErbB/genética , Cloridrato de Erlotinib/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Deleção de Sequência , Resultado do Tratamento , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Rev Sci Instrum ; 88(4): 043701, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28456274

RESUMO

This study proposes a modified Shinnar-Le Roux method to synthesize the excitation radio frequency (RF) pulse for a 2D gradient echo (GRE) based simultaneous multi-slice (SMS) magnetic resonance imaging (MRI) with features of low specific absorption rate (SAR) and small out-of-slice ripple. This synthesis method for SMS RF pulses employs thinner slice bandwidth and lower multislice offset frequencies to reduce SAR values and adopts a weighted Parks-McClellan algorithm to reduce sidelobes. Formulas for estimating relative SAR values of the SMS pulses are also introduced. Relative SAR values and out-of-slice ripples of the proposed and typical RF pulses with different parameters are presented. In simultaneous 5-slice phantom and 3-slice human brain imaging, SMS pulses synthesized with the proposed method achieve 32% and 28% SAR values of standard pulses while providing similar image qualities. Typical RF pulses such as sinc x cos can also take advantage of the proposed method and offer lower SAR values for SMS imaging. The RF pulse synthesized using the proposed method features low SAR, small sidelobes, and consistent image quality for 2D GRE-based SMS MRI. This method is applicable to the synthesis of typical SMS RF pulses for significant SAR reduction.

19.
Magn Reson Med ; 77(2): 592-602, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26834053

RESUMO

PURPOSE: To test whether susceptibility imaging can detect microvenous oxygen saturation changes, induced by hyperoxia, in the rat brain. METHODS: A three-dimensional gradient-echo with a flow compensation sequence was used to acquire T2*-weighted images of rat brains during hyperoxia and normoxia. Quantitative susceptibility mapping (QSM) and QSM-based microvenous oxygenation venography were computed from gradient-echo (GRE) phase images and compared between the two conditions. Pulse oxygen saturation (SpO2 ) in the cortex was examined and compared with venous oxygen saturation (SvO2 ) estimated by QSM. Oxygen saturation change calculated by a conventional Δ R2* map was also compared with the ΔSvO2 estimated by QSM. RESULTS: Susceptibilities of five venous and tissue regions were quantified separately by QSM. Venous susceptibility was reduced by nearly 10%, with an SvO2 shift of 10% during hyperoxia. A hyperoxic effect, confirmed by SpO2 measurement, resulted in an SvO2 increase in the cortex. The ΔSvO2 between hyperoxia and normoxia was consistent with what was estimated by the Δ R2* map in five regions. CONCLUSION: These findings suggest that a quantitative susceptibility map is a promising technique for SvO2 measurement. This method may be useful for quantitatively investigating oxygenation-dependent functional MRI studies. Magn Reson Med 77:592-602, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/metabolismo , Veias Cerebrais/metabolismo , Hiperóxia/metabolismo , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Oximetria/métodos , Oxigênio/metabolismo , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Hiperóxia/diagnóstico por imagem , Aumento da Imagem/métodos , Masculino , Imagem Molecular/métodos , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
PLoS One ; 11(3): e0149602, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26974842

RESUMO

Abnormal cerebral oxygenation and vessel structure is a crucial feature of stroke. An imaging method with structural and functional information is necessary for diagnosis of stroke. This study applies QSM-mMRV (quantitative susceptibility mapping-based microscopic magnetic resonance venography) for noninvasively detecting small cerebral venous vessels in rat stroke model. First, susceptibility mapping is optimized and calculated from magnetic resonance (MR) phase images of a rat brain. Subsequently, QSM-mMRV is used to simultaneously provide information on microvascular architecture and venous oxygen saturation (SvO2), both of which can be used to evaluate the physiological and functional characteristics of microvascular changes for longitudinally monitoring and therapeutically evaluating a disease model. Morphologically, the quantification of vessel sizes using QSM-mMRV was 30% smaller than that of susceptibility-weighted imaging (SWI), which eliminated the overestimation of conventional SWI. Functionally, QSM-mMRV estimated an average SvO2 ranging from 73% to 85% for healthy rats. Finally, we also applied QSM to monitor the revascularization of post-stroke vessels from 3 to 10 days after reperfusion. QSM estimations of SvO2 were comparable to those calculated using the pulse oximeter standard metric. We conclude that QSM-mMRV is useful for longitudinally monitoring blood oxygen and might become clinically useful for assessing cerebrovascular diseases.


Assuntos
Circulação Cerebrovascular , Angiografia por Ressonância Magnética/métodos , Microcirculação , Oxigênio/administração & dosagem , Acidente Vascular Cerebral , Animais , Modelos Animais de Doenças , Masculino , Oximetria/métodos , Oxigênio/sangue , Flebografia , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...